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1. Understanding polarimetry with simulations

Spectral line (Stokes I) and corresponding Stokes V (schematic).
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Due to the Zeeman-effect , left or right

circularly polarized light emanates from

the flanks of a magnetically sensitive

spectral line. Stokes V is the difference be-

tween right and left circularly polarized light.
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1. Understanding polarimetry with simulations (cont.): observation

Weak field limit: V ∼ g(∂I/∂λ) ⇒
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⇒ Section at 1%

Bivariate scatter of the Stokes-V amplitudes of the 6302.5 Å line vs. the

6301.5 Å line as observed with Hinode/SOT/SP. The dashed line with slope

s=1.66 represents the regression relation expected for weak fields. We identify

two populations of points. From Stenflo (2010) A&A 517 A37 .
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1. Understanding polarimetry with simulations (cont.): simulation data
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Scatter plot of Stokes-V amplitudes of two lines and histogram of the line ratio at two

different amplitude levels from the simulation. From Steiner & Rezaei (2012).
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1. Understanding polarimetry with simulations (cont.): simulation data
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Left: Scatter plot of the Stokes-V amplitude of Fe I 630.250 nm vs. that of Fe I

630.151 nm of synthesized V profiles from MHD simulation h50. The scatter is from

pixels at full spatial resolution. Right: Corresponding histogram of the points that fall

within the range 0.8 ≤ V630.15 ≤ 1.0 (black) and 1.8 ≤ V630.15 ≤ 2.0 (gray).

From Steiner & Rezaei (2012), Hinode 5 Proc.
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“It is nice to know that the computer understands the problem,

but I would like to understand it too.”

Attributed to E.P. Wigner
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“It is nice to know that the computer understands the problem,

but I would like to understand it too.”

Attributed to E.P. Wigner

“It is nice to know that our simulations reproduce the

observations, but what can we learn from it?”
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1. Understanding polarimetry with simulations (cont.)

log τ = −3

log τ = −2

log τ = −1

Histogram of the field strength at different heights for the two populations of line-ratios from run v50

and for pixels with 1.0 ≤ Vb 6301 ≤ 2.0. s = 〈Vb 6302/Vb 6301〉. Steiner & Rezaei (2012)
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2. Understanding polarimetry with simulations (cont.)

White: Pixels with polarization

level 1.0 ≤ V630.15 ≤ 2.0

belonging to the population with

V b
630.25

/V b
630.15

≤ 1.5

(first, main population). Red:

Pixels with polarization level

1.0 ≤ V630.15 ≤ 2.0 be-

longing to the population with

V b
630.25

/V b
630.15

≥ 1.5 (second,

intrinsic weak field population).

Background: Continuum intensity

at 630 nm. From Steiner & Rezaei

(2012) Hinode 5 Proc.

Conclusion: The two populations can be explained in terms of weak (hectogauss)

magnetic fields. Numerical simulations are indispensable for the correct interpretation.
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2. Numerical simulations at IRSOL

Solar granulation observed with the new

1.4 m GREGOR solar telescope. Broad-

band filter at λ = 4860 Å.

Solar granulation simulated with the

CO
5
BOLD radiation MHD code. Synthetic

map of bolometric intensity.
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Numerical simulations at IRSOL (cont.)

Bolometric intensity maps (CO
5
BOLD simulations, ∆x = ∆y = ∆z = 10 km)

With magnetic fields:

magnetic bright points.

Without magnetic fields: Courtesy,

non-magnetic bright points F. Calvo.
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Numerical simulations at IRSOL (cont.)

Slices across a non-magnetic bright point (nMBP0868)
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Emergent intensity I (top left), temperature T (bottom), density log(ρ) (right)
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Numerical simulations at IRSOL (cont.)

Slices across a non-magnetic bright point (nMBP0868)
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Emergent intensity I (top left), temperature T (bottom), density log(ρ) (right)
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Numerical simulations at IRSOL (cont.)

Density (blue: low, red: high) and velocity field in an

horizontal plane, 150 [km] below 〈τ〉 = 1

non-magnetic bright points

(nMBPs) are locations with:

- swirling motion (but

≈ 150 [km] below τ = 1

there are often swirls that do

not produce nMBPs);

- low density (but a density

deficiency alone does not

warrant nMBP’s);

- high intensity contrast (but a

local intensity peak does not

need to be a nMBP).

Courtesy, F. Calvo, IRSOL.
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Numerical simulations at IRSOL (cont.)

Previous investigations of non-magnatic bright points from simulations by

R. Moll et al. (2011, A&A 533, A126), B. Freytag (2013, MSAI 24, 26), B. Beeck et

al. (2015, A&A 558, A49).

Statistical properties from 256 non-magnetic bright points:

diameter [km] intensity contrast mass density Wilson

(intensity FWHM) local [%] global [%] contrast [%] depression [km]

40± 10 20± 10 2.3± 9 58± 10 103± 32

Courtesy, F. Calvo, IRSOL.
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Numerical simulations at IRSOL (cont.)

Multi-Waveband Observation:

Layered atmosphere from the photosphere

(bottom panel: magnetogram, Fe I 630.2 nm

continuum), through the chromosphere

(Dopplergram, Ca II 854.2 nm) and the

transition region (He II 30.4 nm) to the

low corona (top: Fe IX 17.1 nm). Co-

temporal observations with SDO/AIA (ca-

dence, 12 s; image scale, 0.699′′ per

pixel) and SST/CRISP (cadence, 14 s; Ca II

854.2 nm; image scale, 0.0699′′ per pixel).

From Wedemeyer, Scullion, Steiner et al.

(2012) Nature 486, 505.
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Numerical simulations at IRSOL (cont.)

Close-up of a swirl event.

The plasma flows along

and co-rotates with the

magnetic field (spiral

streamlines). From

www.solartornado.info.
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3. Polarized radiative transfer in discontinuous media

Horizontal cross-section in the

chromosphere of a simula-

tion. Colors show temperature.

Shock fronts and temperature

spikes are ubiquitous.

In a PhD-project at IRSOL, we

test new ideas on numerical

methods for polarized radia-

tive transfer in discontinuous

media (PhD-project of Gioele

Janett).
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